
CSE 492   Software Systems Engineering

“Are CORBA Objects Reliable in Real-Time
Systems?”

by

06 December 1999



2

Introduction

Object oriented technologies have made a tremendous impact in the development

of computer systems in recent years.  One popular trend is the use of the Common Object

Request Architecture (CORBA).  According to Dr. Alexander Malinowski, Department

of Electrical Engineering University of Wyoming, “CORBA emerged as one of possible

solutions to data exchange among distributed applications.”  This communication

protocol for interaction between heterogeneous systems has generated a demand from

members of the telecommunications and defense community.  Both require systems that

meet real time specifications and are considered to be “mission critical.”  This paper

attempts to discuss the development of this technology and research its reliability in

embedded systems.

Defining CORBA

CORBA provides the standards that specify a common architecture for building

distributed object systems, common services for use in such systems, and protocols for

interoperability among implementations.  The Object Management Group (OMG)

produced these standards, a group consisting have over 600 software vendors, developers

and end users.  Object Request Brokers (ORBs) are middleware products that implement

CORBA standards.  CORBA’s goal is to allow systems with differing hardware

components, operating systems, and programming languages to communicate regardless

of their location on a network.  Included in the standards is a platform independent

language the Interface Definition Language (IDL) which allows a client application to

invoke the methods of a server object in a very seamless fashion.



3

Defining Real-Time Systems

What is a Real-Time system?  “A Real-Time system is one in which the

correctness of the computations not only depends upon the logical correctness of the

computations but also upon the time at which the result is produced.  If the timing

constraints of the system are not met, system failure is said to have occurred.”, Donald

Gillies, Software Engineering, University of British Columbia, Vancouver, B.C. Canada.

Such systems usually demand high reliability and dependability because of safety

implications and the potential lost of life.  Therefore it is essential to meet timing

constraints for these systems to behave in the appropriate manner.

CORBA Real Time Issue

OMG’s 1991 and 1994 adoption of CORBA standards, did not specifically

address the use of CORBA in Real Time and fault-tolerant settings, still many embedded

systems were implemented with CORBA extensions.  But problems with CORBA

supporting Real-Time application remained unsolved as late as October 1998.

Developers were required to over-architect systems to ensure data flow with no

interruption and to determine their quality of service. Developing predictable ORBs and

providing control to ORB operations were not specified in the standards.  Additionally,

ORB’s handling of task priority information was based on proprietary decisions.

Solutions or lack of solutions to solve such problems defeated the purpose of CORBA or

required complex design work by the developer.

Building Real-Time distributed systems with predictability and schedulability is

challenging enough.  Real-Time operation systems provide a predictable thread



4

scheduling but other components such as processor, buses and networks required their on

schedule.  What is required in real time CORBA is the ability to schedule when

components run and prioritize their activities over the network, says OMG officials.

ORBs used under the 1991 and 1994 standards had implementation options as to how to

make CORBA work.  One option was to specify quality of service properties in the IDL,

which required knowledge of all network nodes at design time.  This was fine for closed

system architectures but the industry was moving towards open systems architectures.

Another option was to set these properties during the connection of the client and server

at run time, which became a challenging design issue.  One implementation problem was

the choice of passing task priority information from the client to the server, or assigning

static priorities to the server objects.   TCP/IP is the dominant transport protocol used

with CORBA.  There were demands for systems to use proprietary transports other than

TCP/IP to meet application Real-Time requirements but this jeopardized their ability to

talk to other nodes on the network.   The use of ORBs in embedded systems desired

additional standards to ensure their reliability in these critical systems.

Studies

In December of 1997, Andreus Polze of Humbolt University of Berlin lead a team

in studying the use of CORBA in Real-Time settings focusing on problems in the

manufacturing domain.  Using the Software Engineering Institute (SEI) simplex

architecture, the first model problem examined “the use of ORBs as an interconnection

mechanism between hard Real-Time systems”.  Secondly, they explored the use of the

National Institute of Standards (NIST) Real-Time Control System (RCS) architecture to



5

model a problem of ORBs as a Real-Time communication mechanism within a Real-

Time system.

In the first problem the CORBA extended simplex architecture is designed to

support and tolerate errors introduced by new or upgraded components.  A synchronized

inverted pendulum application is executed to demonstrate the control of a physical device

through fault-tolerate software.  Here, CORBA is not responsible for achieving Real-

Time and quality-of-services requirements.  After examining results, the following

concerns were voiced:  1)  Although not in this case, communication latency could be a

problem using a non-Real-Time gateway between real time applications  2)  Sharing

computer platforms between the Real-Time application and the CORBA methods

disrupted the applications behavior because of network loading of the RTOS when

numerous CORBA methods were invoked.

The second problem studied the use of CORBA Communication as a substitute

for shared-memory communication inside the NIST motion controller soft Real-Time

application. It used the RCS to control a machine tool. Observations showed latency

problems with the CORBA substitute. Because of this, key components read invalid data

that cause the motor of the tool to behave inappropriately. The test revealed the

following:

1) Simply parting an ORB to the Real-Time platform is not sufficient to integrate

CORBA and Real-Time programming.

2) The performance of the system could  improve with tuning.

Polze report concluded that CORBA could be used in certain Real-Time application

settings in which many of CORBA’s shortcomings would have to be addressed.



6

The Defense Information Infrastructure Common Operating Environment

Integrated Product Team (DII-COE IPT) presented a Real-Time ORB Trade Study in

August 1999. ORB products studied included Hardpack by Lockheed Martin, ORB

express by Objective Interface and TAO by Washington University. The test executed six

primary IDC operations with a single client thread in four different scenarios,

client/server on the same machine, client and server machines separated by 10 MB

Ethernet with a zero and 70 millisecond delays between invocations. Analysis of the

results revealed all three performed better than non-Real-Time ORB products in which

ORB express out performed its competitors. ORB express V.2.0.1 product was

benchmark with 2,700 two-way operations per second by Lawrence Livermore Labs.

HardPack has been sponsored as part of the Real-Time DII COE.  Originally

developed to support time-critical military applications, HardPack implement CORBA

services as well as custom Real-Time and fault-tolerant extensions.  Lockheed addressed

many of the issues associated with CORBA for embedded systems.  HardPack provides

Real-Time predictability and streamlined low latency, it manages resources allocations

and preserves priorities.  HardPack was also used in the modernization effort for the

Airborne Warning and Control System (AWACS) computer infrastructure.

Real-Time CORBA Adopted

Finally in the spring of 1999, the OMG adopted standards for Real-Time ORBs

(CORBA 3.0).  The primary goal of the specification was to support developers in

meeting Real-Time systems requirements.  Real-Time CORBA is defined as an extension

to the existing CORBA.  Developers now have ORBs implemented with the ability to do



7

“end-to-end predictability” a key requirement of fault-tolerant systems.  Thread priorities

between client and server will be respected for resolving resource contention.

Developers can set the latencies of operation invocation and bound the duration of thread

priority inversions.  Real-Time CORBA system will require four key components:

1)  The scheduling mechanisms in the OS

2)  The Real-Time ORB

3)  The communication transport

4)  The application (s)

The important point to make here is that Real-Time ORB must still rely on the underlying

operating system and the application to determine predictability.

Other specifications addressing problem areas such as resource management and

compatibility are incorporated in this version.  Real-Time CORBA provides control over

threadpools by assigning objects threads and their priorities and transport connections.

Using the standard CORBA Internet Inter-ORB Protocol (IIOP), two Real-Time ORBs

can be interoperable and IIOP will allow vendors to bridge between Real-Time ORBs by

mapping their Real-Time IOP onto the IIOP.  Real-Time CORBA components can

interwork with CORBA components but with predictability and latency issues that must

be addressed and CORBA applications can be ported to Real-Time ORBs.

 



8

Conclusion

CORBA has become a very popular technology within the IT community.  The

benefits of using CORBA for solving distributed system problems, providing cost

effective flexible and portable systems and promoting reuse and etc are attractive to Real-

Time system developers.  Initially the specifications for CORBA did not address its use

in Real-Time settings.  Inspite of this, embedded systems were implemented using

CORBA extensions.  Research has shown that fault-tolerant systems using these

extensions are reliable in certain settings.  Many vendors specifically designed and

develop their products to address Real-Time CORBA issues and satisfied the needs of

this niche market.  Based on my research I feel confident that CORBA can be

implemented in Real-Time systems.  The newly adopted Real-Time CORBA

specification has addressed many of the earlier issues concerning hard Real-Time

systems.  Although I believe there will be modifications and additions in later version but

for now CORBA is reliable.



9

References

1. Polze, A. (1997). A Study in the Use of CORBA in Real-Time Settings:

Model Problems for the Manufacturing Domain.  Software Engineering Institute

2. The Object Management Group’s home page is www.omg.org.

3. Murphy, N. (1998). Introduction to CORBA for Embedded Systems.  Embedded

Systems Programming, October 1998

4. Lockheed Martin Federal Systems: www.owego.com/hardpack

5. Malinowski, A. (1998). CORBA – the New Technology for Industrial and

Telecommunication Network-Distributed Applications.  New Technologies,

http://sant.bradley.edu/~ienews/98_2/corba.htm

6. Garon, J and Herscher, S. (1997)  Embedded CORBA. Expersoft Developer

Resources, http://www.expersoft.com/Resources/Wpapers/embed_corba.htm

7. Gonsalves, A. (1998) CORBA Goes Real-Time. PC Week, 1998

8. Objective Interface Systems, Inc. (1998). Real-Time and Embedded Corba

Objective Interface Systems, Inc.

9. Comp.realtime: Frequently Asked Questions (FAQs) URL is

http.faqs.org/faqs/realtime-computing/faq/

10. The DII COE Real-Time ORB Trade Study webpage is

http://www.ois.com/technical/rt_diicoe_ipt.html, (1999)

11. Orfali R., Harkey D., and Edwards J., (1999) Client/Server Survival Guide. John

Wiley & Sons, Inc.



10


